3.26.35 \(\int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^2} \, dx\) [2535]

Optimal. Leaf size=93 \[ \frac {3 \sqrt {1-2 x} \sqrt {3+5 x}}{49 (2+3 x)}+\frac {2 (3+5 x)^{3/2}}{7 \sqrt {1-2 x} (2+3 x)}+\frac {33 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{49 \sqrt {7}} \]

[Out]

33/343*arctan(1/7*(1-2*x)^(1/2)*7^(1/2)/(3+5*x)^(1/2))*7^(1/2)+2/7*(3+5*x)^(3/2)/(2+3*x)/(1-2*x)^(1/2)+3/49*(1
-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {96, 95, 210} \begin {gather*} \frac {33 \text {ArcTan}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {5 x+3}}\right )}{49 \sqrt {7}}+\frac {2 (5 x+3)^{3/2}}{7 \sqrt {1-2 x} (3 x+2)}+\frac {3 \sqrt {1-2 x} \sqrt {5 x+3}}{49 (3 x+2)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)^2),x]

[Out]

(3*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/(49*(2 + 3*x)) + (2*(3 + 5*x)^(3/2))/(7*Sqrt[1 - 2*x]*(2 + 3*x)) + (33*ArcTan[
Sqrt[1 - 2*x]/(Sqrt[7]*Sqrt[3 + 5*x])])/(49*Sqrt[7])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[n*((d*e - c*f)/((m + 1)*(b*e - a*f
))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[
m + n + p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] ||  !SumSimplerQ[p, 1]) && NeQ[m, -1]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {(3+5 x)^{3/2}}{(1-2 x)^{3/2} (2+3 x)^2} \, dx &=\frac {2 (3+5 x)^{3/2}}{7 \sqrt {1-2 x} (2+3 x)}-\frac {3}{7} \int \frac {\sqrt {3+5 x}}{\sqrt {1-2 x} (2+3 x)^2} \, dx\\ &=\frac {3 \sqrt {1-2 x} \sqrt {3+5 x}}{49 (2+3 x)}+\frac {2 (3+5 x)^{3/2}}{7 \sqrt {1-2 x} (2+3 x)}-\frac {33}{98} \int \frac {1}{\sqrt {1-2 x} (2+3 x) \sqrt {3+5 x}} \, dx\\ &=\frac {3 \sqrt {1-2 x} \sqrt {3+5 x}}{49 (2+3 x)}+\frac {2 (3+5 x)^{3/2}}{7 \sqrt {1-2 x} (2+3 x)}-\frac {33}{49} \text {Subst}\left (\int \frac {1}{-7-x^2} \, dx,x,\frac {\sqrt {1-2 x}}{\sqrt {3+5 x}}\right )\\ &=\frac {3 \sqrt {1-2 x} \sqrt {3+5 x}}{49 (2+3 x)}+\frac {2 (3+5 x)^{3/2}}{7 \sqrt {1-2 x} (2+3 x)}+\frac {33 \tan ^{-1}\left (\frac {\sqrt {1-2 x}}{\sqrt {7} \sqrt {3+5 x}}\right )}{49 \sqrt {7}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.57, size = 138, normalized size = 1.48 \begin {gather*} \frac {1}{343} \left (-\frac {7 \sqrt {1-2 x} \sqrt {3+5 x} (45+64 x)}{-2+x+6 x^2}-33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {2 \left (34+\sqrt {1155}\right )} \sqrt {3+5 x}}{-\sqrt {11}+\sqrt {5-10 x}}\right )-33 \sqrt {7} \tan ^{-1}\left (\frac {\sqrt {6+10 x}}{\sqrt {34+\sqrt {1155}} \left (-\sqrt {11}+\sqrt {5-10 x}\right )}\right )\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(3 + 5*x)^(3/2)/((1 - 2*x)^(3/2)*(2 + 3*x)^2),x]

[Out]

((-7*Sqrt[1 - 2*x]*Sqrt[3 + 5*x]*(45 + 64*x))/(-2 + x + 6*x^2) - 33*Sqrt[7]*ArcTan[(Sqrt[2*(34 + Sqrt[1155])]*
Sqrt[3 + 5*x])/(-Sqrt[11] + Sqrt[5 - 10*x])] - 33*Sqrt[7]*ArcTan[Sqrt[6 + 10*x]/(Sqrt[34 + Sqrt[1155]]*(-Sqrt[
11] + Sqrt[5 - 10*x]))])/343

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(160\) vs. \(2(72)=144\).
time = 0.09, size = 161, normalized size = 1.73

method result size
default \(-\frac {\left (198 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x^{2}+33 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right ) x -66 \sqrt {7}\, \arctan \left (\frac {\left (37 x +20\right ) \sqrt {7}}{14 \sqrt {-10 x^{2}-x +3}}\right )+896 x \sqrt {-10 x^{2}-x +3}+630 \sqrt {-10 x^{2}-x +3}\right ) \sqrt {1-2 x}\, \sqrt {3+5 x}}{686 \left (2+3 x \right ) \left (-1+2 x \right ) \sqrt {-10 x^{2}-x +3}}\) \(161\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^2,x,method=_RETURNVERBOSE)

[Out]

-1/686*(198*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))*x^2+33*7^(1/2)*arctan(1/14*(37*x+20)*7^
(1/2)/(-10*x^2-x+3)^(1/2))*x-66*7^(1/2)*arctan(1/14*(37*x+20)*7^(1/2)/(-10*x^2-x+3)^(1/2))+896*x*(-10*x^2-x+3)
^(1/2)+630*(-10*x^2-x+3)^(1/2))*(1-2*x)^(1/2)*(3+5*x)^(1/2)/(2+3*x)/(-1+2*x)/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.58, size = 92, normalized size = 0.99 \begin {gather*} -\frac {33}{686} \, \sqrt {7} \arcsin \left (\frac {37 \, x}{11 \, {\left | 3 \, x + 2 \right |}} + \frac {20}{11 \, {\left | 3 \, x + 2 \right |}}\right ) + \frac {320 \, x}{147 \, \sqrt {-10 \, x^{2} - x + 3}} + \frac {611}{441 \, \sqrt {-10 \, x^{2} - x + 3}} - \frac {1}{63 \, {\left (3 \, \sqrt {-10 \, x^{2} - x + 3} x + 2 \, \sqrt {-10 \, x^{2} - x + 3}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^2,x, algorithm="maxima")

[Out]

-33/686*sqrt(7)*arcsin(37/11*x/abs(3*x + 2) + 20/11/abs(3*x + 2)) + 320/147*x/sqrt(-10*x^2 - x + 3) + 611/441/
sqrt(-10*x^2 - x + 3) - 1/63/(3*sqrt(-10*x^2 - x + 3)*x + 2*sqrt(-10*x^2 - x + 3))

________________________________________________________________________________________

Fricas [A]
time = 1.04, size = 82, normalized size = 0.88 \begin {gather*} \frac {33 \, \sqrt {7} {\left (6 \, x^{2} + x - 2\right )} \arctan \left (\frac {\sqrt {7} {\left (37 \, x + 20\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{14 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) - 14 \, {\left (64 \, x + 45\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{686 \, {\left (6 \, x^{2} + x - 2\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^2,x, algorithm="fricas")

[Out]

1/686*(33*sqrt(7)*(6*x^2 + x - 2)*arctan(1/14*sqrt(7)*(37*x + 20)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3
)) - 14*(64*x + 45)*sqrt(5*x + 3)*sqrt(-2*x + 1))/(6*x^2 + x - 2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (5 x + 3\right )^{\frac {3}{2}}}{\left (1 - 2 x\right )^{\frac {3}{2}} \left (3 x + 2\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)**(3/2)/(1-2*x)**(3/2)/(2+3*x)**2,x)

[Out]

Integral((5*x + 3)**(3/2)/((1 - 2*x)**(3/2)*(3*x + 2)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 219 vs. \(2 (72) = 144\).
time = 1.00, size = 219, normalized size = 2.35 \begin {gather*} -\frac {33}{6860} \, \sqrt {70} \sqrt {10} {\left (\pi + 2 \, \arctan \left (-\frac {\sqrt {70} \sqrt {5 \, x + 3} {\left (\frac {{\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}^{2}}{5 \, x + 3} - 4\right )}}{140 \, {\left (\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}\right )}}\right )\right )} - \frac {22 \, \sqrt {5} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5}}{245 \, {\left (2 \, x - 1\right )}} + \frac {22 \, \sqrt {10} {\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}}{49 \, {\left ({\left (\frac {\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}{\sqrt {5 \, x + 3}} - \frac {4 \, \sqrt {5 \, x + 3}}{\sqrt {2} \sqrt {-10 \, x + 5} - \sqrt {22}}\right )}^{2} + 280\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3+5*x)^(3/2)/(1-2*x)^(3/2)/(2+3*x)^2,x, algorithm="giac")

[Out]

-33/6860*sqrt(70)*sqrt(10)*(pi + 2*arctan(-1/140*sqrt(70)*sqrt(5*x + 3)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))^
2/(5*x + 3) - 4)/(sqrt(2)*sqrt(-10*x + 5) - sqrt(22)))) - 22/245*sqrt(5)*sqrt(5*x + 3)*sqrt(-10*x + 5)/(2*x -
1) + 22/49*sqrt(10)*((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x
+ 5) - sqrt(22)))/(((sqrt(2)*sqrt(-10*x + 5) - sqrt(22))/sqrt(5*x + 3) - 4*sqrt(5*x + 3)/(sqrt(2)*sqrt(-10*x +
 5) - sqrt(22)))^2 + 280)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (5\,x+3\right )}^{3/2}}{{\left (1-2\,x\right )}^{3/2}\,{\left (3\,x+2\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((5*x + 3)^(3/2)/((1 - 2*x)^(3/2)*(3*x + 2)^2),x)

[Out]

int((5*x + 3)^(3/2)/((1 - 2*x)^(3/2)*(3*x + 2)^2), x)

________________________________________________________________________________________